Андрей Смирнов
Время чтения: ~29 мин.
Просмотров: 1

Трехфазный асинхронный двигатель – подключение на 220 вольт

Содержание

<index>

Многие любители и профессионалы применяют в работе электрооборудование различного предназначения. И во многих случаях электрооборудование приводится в движение трехфазными двигателями. Но трехфазная сеть зачастую недоступна в гаражных боксах и индивидуальных домовладениях. И тогда на помощь приходят схемы подключения трехфазного двигателя в однофазную сеть.

Для чего нужен конденсатор

Наиболее распространены и применяются в станках трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором. Их подключение к однофазной сети мы и будем рассматривать. При включении двигателя в трехфазную сеть по трем обмоткам, в разный момент времени протекает переменный ток. Этот ток создает вращающееся магнитное поле, которое начинает вращать ротор двигателя.

При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Выход из этой ситуации был найден. Самым простым и действенным способом оказалось параллельное подключение конденсатора к одной из обмоток двигателя. Конденсатор, импульсно получая и отдавая энергию создает смещение фазы, в обмотках двигателя получается вращающееся магнитное поле и он работает. Емкость постоянно находится под напряжением и называется рабочим конденсатором.

ВАЖНО! Правильно рассчитать и подобрать емкость рабочего конденсатора и его тип.

Как правильно подобрать конденсаторы

Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент. Для разного типа соединений обмоток коэффициент составляет:

  • звездой – 2800;
  • треугольником – 4800.

Недостатком этого метода является то, что не всегда на электродвигателе сохранилась табличка с данными. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. К тому же на силу тока могут действовать такие факторы как отклонения напряжения в сети и величина нагрузки на двигатель.

Мощность электродвигателя, кВт 0,4 0,6 0,8 1,1 1,5 2,2
Ёмкость конденсатора C2 в номинальном режиме, мкФ 40 60 80 100 150 230
Ёмкость конденсатора C2 в недогруженном режиме, мкФ 25 40 60 80 130 200
Ёмкость пускового конденсатора C1 в номинальном режиме, мкФ 80 120 160 200 250 300
Ёмкость конденсатора C1 в недогруженном режиме, мкФ 20 35 45 60 80 100

Читайте также:  Как подключить однофазный стабилизатор напряжения на весь дом?

Поэтому следует применять упрощенный расчет емкости рабочих конденсаторов. Просто учесть, что на каждые 100 ватт мощности необходимо 7 микрофарад емкости. Удобнее использовать несколько параллельно соединенных конденсаторов малой, желательно одинаковой емкости, чем один большой. Просто суммируя емкость собранных конденсаторов, можно легко определить и подобрать оптимальное значение. Для начала лучше процентов на десять занизить суммарную емкость.

Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Если нет – нужно еще подсоединять конденсаторы, пока двигатель не достигнет оптимальной мощности.

СПРАВКА. При подключении трехфазного асинхронного двигателя с короткозамкнутым ротором в однофазную сеть теряется не менее трети его мощности.

Следует помнить, что много не всегда хорошо, и при превышении оптимальной емкости рабочих конденсаторов двигатель будет перегреваться. Перегрев может привести к сгоранию обмоток и выходу электродвигателя из строя.

ВАЖНО! Конденсаторы следует соединять между собой параллельно.

Желательно выбирать конденсаторы с рабочим напряжением не менее 450 вольт. Самыми распространенными являются так называемые бумажные конденсаторы, с буквой Б в наименовании. В настоящее время выпускаются и специализированные, так называемые моторные конденсаторы, например К78-98.

ВНИМАНИЕ! Желательно выбирать конденсаторы для переменного тока. Использование иных тоже возможно, но связано с усложнением схемы и возможными нежелательными последствиями.

В случае, если запуск двигателя осуществляется под нагрузкой и происходит тяжело, необходим еще и пусковой конденсатор. Он включается параллельно рабочему на непродолжительное время пуска электродвигателя. Его емкость должна быть равной или не более чем в два раза превышать емкость рабочего.

Схема подключения электродвигателя 380 на 220 вольт с конденсатором

Подключить трехфазный двигатель в однофазную сеть несложно и с этим справится даже электромонтер-любитель. Если возникают затруднения, следует обратиться к друзьям или знакомым. Рядом всегда найдется грамотный электрик.

Читайте также:  Виды терморегуляторов для теплого пола

Обмотки трехфазных двигателей с рабочим напряжением 380 на 220 для работы в сети на триста восемьдесят вольт соединены по схеме звезда. Это значит, что концы обмоток соединены между собой, а начала подсоединяются в сеть. Для возможности работы электродвигателя в однофазной сети 220 вольт необходимо для начала его обмотки переключить на схему треугольник. Т.е. конец первой соединить с началом второй, конец второй с началом третьей и конец третьей с началом первой.

Эти соединения и будут выводами двигателя для подключения к электропитанию. Два вывода необходимо через двухполюсной выключатель подсоединить к нулю и фазе сети в 220 вольт. Третий вывод через рабочие конденсаторы, соединить с каким либо из первых двух выводов из двигателя. Можно пробовать запускать.

Если запуск прошел успешно, двигатель работает с приемлемой мощностью и не сильно греется, то можно ничего не менять. Получилась работоспособная схема только с рабочими конденсаторами.

В случае запуска под нагрузкой или просто тяжелого пуска двигателя, он может раскручиваться долго и не достигать приемлемой мощности. Тогда потребуется включить в схему еще и пусковую емкость. Пусковые конденсаторы выбираются того же типа, что и рабочие. Одинаковой или в два раза превышающей ёмкость рабочих. И подключаются параллельно им. Используются только для пуска электродвигателя.

Очень удобно для такого пуска использовать своеобразный выключатель серии АП. Важно чтобы он был в исполнении с блок контактами. В нем при нажатии кнопки Пуск пара контактов остается замкнутыми до нажатия на кнопку Стоп. К ним подключают выводы двигателя и электросеть. Третий контакт замкнут только во время удержания кнопки Пуск, через него и подсоединяется пусковой конденсатор. Выключатели такого типа, только без предохранительной аппаратуры часто устанавливали на старые советские центрифуговые стиральные машинки.

Схема подключения электродвигателя без конденсаторов

Реально работающих схем подключения трехфазного двигателя в бытовую сеть 220 вольт без конденсаторов нет. Некоторые изобретатели предлагают подключать двигатели через индукционные катушки или сопротивления. Якобы, таким образом, создается сдвиг фаз на необходимый угол и двигатель вращается. Другие предлагают тиристорные схемы подключения. На практике это не работает, и не стоит изобретать велосипед. Когда есть дешевый и проверенный способ пуска посредством конденсаторов.

Читайте также:  Основные виды и принцип работы реле времени

Действительно рабочим вариантом является подключение трехфазного асинхронного двигателя через преобразователь частоты. Преобразователь подключается в бытовую сеть и выдает трехфазный ток, причем с возможностью плавного пуска и регулировки оборотов. Но стоит такое чудо примерно от 7000 рублей с подключаемой мощностью всего в 250 ватт. Мощные приборы стоят гораздо дороже. За такие деньги можно приобрести электрооборудование с возможностью подключения к однофазной цепи. Будь то мини токарный станок, циркулярка, насос или компрессор.

Как подключить с реверсом

Обеспечить вращение ротора в обратную сторону не представляет затруднения. В схему подключения двигателя необходимо добавить двухпозиционный переключатель. Средний контакт переключателя подсоединяется к одному из контактов конденсаторов, а крайние к выводам двигателя.

ВНИМАНИЕ! Сначала необходимо переключателем выбрать направление вращения, и только потом запустить двигатель. При работающем электродвигателе переключателем направления вращения пользоваться нельзя.

Рассмотренные варианты подключения промышленных двигателей в бытовую сеть не представляют большой сложности при их реализации. Важно только внимательно отнестись к некоторым нюансам и оборудование, хоть и с небольшой потерей мощности, прослужит долго и принесет пользу.

</index>

Похожие статьи

Устройство, виды и принцип действия асинхронных электродвигателейЧто такое контактор: назначение, принцип работы, виды, схемы подключенияПоверка электросчетчика: срок поверки и межповерочный интервалКак правильно выбрать и какой лучше поставить электросчетчик в квартируЧто делать если остановился или сломался электросчетчик в квартире?Что такое генератор водорода и как его сделать своими рукамиКак выбрать генератор для загородного дома или дачи, ТОП моделейКак устроен генератор переменного тока — назначение и принцип действия

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

Содержание статьи

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

Semnik-podshipnikov-elektrodvigatelya.png

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Обращайте особое внимание на состояние подшипников, выполнение нормативов по допускам и посадкам, качество смазки. Сухую и старую смазку обязательно необходимо заменять свежей.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
    • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

Как видите, судить о конструкции асинхронного двигателя по количеству выведенных проводов на клеммнике от обмоток статора можно, но вероятность ошибки довольно высока. Нужен более тщательный анализ его устройства.

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Sushka-elektrodvigatelya.png

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

Tablicza-odnofaznyh-asinhronnyh-dvigatelej.png

Как видите, промышленностью массово выпущены модели с:

  • повышенным сопротивлением пусковой обмотки;
  • пусковым конденсатором;
  • рабочим конденсатором;
  • пусковым и рабочим конденсатором;
  • экранированными полюсами.

А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

  • значительное снижение реактивной мощности;
  • повышение КПД;
  • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Soprotivlenie-obmotok-dvigatelya.png

Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

  • О — общий;
  • П — пусковой;
  • Р — рабочий.

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

Shema-knopki-PNVS.png

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Knopka-PNVS.png

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

Shema-podklyucheniya-asinhronnogo-dvigatelya-s-puskovoj-obmotkoj.png

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

  • пусковая обмотка отключается самовозвратом среднего контакта;
  • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они предотвратят развитие аварийных ситуаций при возникновении любых случайных ошибок.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Shema-podklyucheniya-asinhronnogo-dvigatelya-s-kondensatornym-zapuskom.png

Здесь получается, что:

  • главная обмотка работает напрямую от 220 В;
  • вспомогательная — только через емкость конденсатора.

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Shema-podklyucheniya-asinhronnogo-dvigatelya-cherez-kondensatory.png

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Добавление резисторов в схему пуска электродвигателя повышает безопасность его эксплуатации, автоматически ограничивает протекание емкостного тока разряда заряженного конденсатора через тело человека.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

Kak-pomenyat-napravlenie-vrashheniya-dvigatelya.png

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Shema-reversa-dvigatelya.png

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Revers-asinhronnogo-dvigatelya.png

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.

Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

<index>

С асинхронным двигателем сталкивался практически каждый человек. Они устанавливаются в большое количество бытовой техники, а также рабочего электроинструмента. Однако часть моторов подключаются только через трехфазный провод.

Асинхронные двигатели – это надежные и практичные моторы, которые применяются повсеместно. Они малошумные и обладают неплохой производительностью. В данной статье будут показаны основные принципы работы трехфазных электродвигателей, схема подключения в сеть 220В, а также различные хитрости при работе с ними.

Что такое трехфазный ток?

Большинство асинхронных двигателей работает от трехфазной сети, поэтому изначально рассмотрим понятие трехфазного тока. Трехфазный ток или трехфазная система электрических цепей – это система, состоящая из трех цепей, в которой действуют электродвижущие силы (ЭДС) одинаковой частоты, сдвинутые по фазе друг относительно друга на 1/3 периода(φ=2π/3) или 120°.

Большинство производственных генераторов построено на основе трехфазной генерации тока. По сути, в них используют три генератора переменного тока, которые располагаются относительно друг друга под углом 120°.

Схема с тремя генераторами предполагает, что из данного устройства будут выводиться 6 проводов (по два на каждый генератор переменного тока). Однако на практике видно, что бытовые, да и промышленные сети приходят к потребителю в виде трех проводов. Это делается в целях экономии электропроводки.

Катушки генераторов соединяют таким образом, что на выходе получается 3 провода, а не 6. Также данная коммутация обмоток генерирует ток мощностью 380В, вместо привычных 220В. Именно такую трехфазную сеть привыкли видеть все пользователи.

ИНФОРМАЦИЯ: Первая система трехфазного тока на шести проводах была изобретена Николой Тесла. Позже ее усовершенствовал и развил М. О. Доливо-Добровольский, который впервые предложил четырех и трех проводную систему, а также провел череду экспериментов, где выявил ряд преимуществ данной коммутации.

Большинство асинхронных двигателей работают от трехфазной сети. Рассмотрим подробнее, как устроена работа данных агрегатов.

Устройство асинхронного двигателя

Начнем с внутренней архитектуры мотора. Внешне устройство трехфазного асинхронного двигателя практически ничем не отличается от других электромоторов. Пожалуй, единственное отличие, бросающиеся в глаза – это более толстый провод питания. Основные отличия спрятаны от глаз потребителя под металлическим кожухом мотора.

Вскрыв коробку управления (место, куда заходят провода питания), можно увидеть 6 вводов проводов. Их подсоединяют двумя способами, в зависимости от того, какие характеристики нужно получить от данного мотора. Подробнее о способах коммутации трехфазных асинхронных двигателей будет рассказано ниже.

Сняв защитный металлический кожух, можно увидеть рабочую часть мотора. Он состоит из:

  • вала;
  • подшипниковых узлов;
  • статора;
  • ротора.

Основные компоненты мотора – это статор и ротор. Именно они приводят двигатель в движение.

Разберем строение данных компонентов в трехфазном асинхронном двигателе:

  1. Статор. Имеет форму цилиндра, обычно состоит из листов стали. Вдоль листов располагаются продольные пазы, в которых находятся обмотки статора, изготовленные из обмоточного провода. Оси каждой обмотки расположены относительно друг друга под углом 120°. Концы обмоток соединяют методом треугольника или звезды.
  2. Ротор или сердечник мотора. Это цилиндрический узел, набранный из металлических пластин, между которыми располагаются алюминиевые стержни. По краям цилиндра конструкция замыкается накоротко торцевыми кольцами. Второе название ротора асинхронного двигателя – беличья клетка. В двигателях большой мощности вместо алюминия может применяться медь.

Теперь стоит разобраться, на каких принципах построена работа асинхронного трехфазного двигателя.

Принципы работы трехфазных асинхронных двигателей

Трехфазный асинхронный двигатель работает за счет магнитных полей, которые создаются на обмотках статора. Токи, проходящие через каждую обмотки, имеют сдвиг в 120° относительно друг друга во временной и пространственной характеристике. Таким образом, совокупный магнитный поток на трех контурах является вращающим.

На обмотках статора образуется замкнутая электрическая цепь. Она взаимодействует с магнитным полем статора. Так появляется пусковой момент двигателя. Он стремится повернуть ротор в направлении вращения магнитного поля статора. Со временем пусковой момент подходит к значению тормозного момент ротора, после чего он превышает его и ротор приводится в движение. В этот момент возникает эффект скольжения.

ИНФОРМАЦИЯ: Скольжение — это величина, которая показывает, насколько синхронная частота магнитного поля статора больше, чем частота вращения ротора, в процентном соотношении.

Рассмотрим данный параметр в разных ситуациях:

  1. На холостом ходу. Без нагрузки на валу скольжение имеет минимальное значение.
  2. При нарастающей нагрузке. С увеличением статического напряжения величина скольжения растет и может достигнуть критического значения. В случае, если мотор превысит данный показатель, может произойти «опрокидывание» двигателя.

Параметр скольжения находится в диапазоне от 0 до 1. У асинхронных двигателей общего назначения данный параметр составляет 1-8%.

Когда наступает равновесие между электромагнитным моментом ротора и тормозным моментом на валу мотора, процессы колебания величин прекращаются.

При наступлении равновесия между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом, создаваемым нагрузкой на валу, процессы изменения величин прекратятся. Получается, что основной принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. При этом необходимо учитывать, что вращающийся момент возникает только в результате разности частоты вращения магнитных полей на обмотках мотора.

Зная принцип работы асинхронного трехфазного двигателя, можно произвести его запуск. В этом случае стоит учитывать несколько вариантов подключения обмоток мотора.

Способы подключения обмоток асинхронных двигателей

Раскрутив блок управления двух простых двигателей асинхронного типа, можно увидеть по 6 выводов проводов в каждом из них. Однако их коммутация может значительно отличаться.

В электротехнике принято подключать обмотки трехфазные асинхронных двигателей двумя способами:

  • звездой;
  • треугольником.

Каждый тип подключения влияет на производительность двигателя, а также на его пиковые показатели мощности. Рассмотрим каждый из них по отдельности.

Метод звезды

В данном типе коммутации все выводы рабочих обмоток соединяются одной перемычкой в один узел. Его называют нейтральной точкой и обозначают буквой «О». Получается, что концы всех фазных обмоток соединятся в одном месте.

На практике моторы с соединением по методу звезды обладают более мягким пуском. Такая комбинация подходит, например, для токарных станков или другой техники, где требуется медленный старт. Однако данный двигатель не может развивать максимально паспортной мощности.

Метод треугольника

Данная коммутация предполагает последовательное соединение концов фазных обмоток. На выводах проводах это выглядит, как попарное соединение каждой обмотки. Получается, что конец одной обмотки переходит в начало другой.

Двигатели с таким соединением обмоток стартуют намного быстрее, чем моторы с коммутацией методом звезды. При этом они могут развивать максимальные мощности, предусмотренные заводом изготовителем.

Трехфазные асинхронные двигатели проектируются, исходя из номинального питающего напряжения. В частности, все отечественные двигатели подразделяют на две категории:

  • для сетей 220/127В;
  • для сетей 380/220В.

Моторы первой группы менее распространены в силу своих слабых мощностных характеристик. Чаще всего используют моторы второй группы.

ВАЖНО: При коммутации обмоток мотора используют правило: для более низких значений напряжения выбирают подключение методом треугольника, для высоких – только методом звезды.

Некоторые заядлые радиолюбители могут определить схему подключения мотора по звуку его пуска. Обычный человек может узнать о методе коммутации обмоток двигателя несколькими способами.

Как определить, по какой схеме подключены обмотки двигателя?

Метод коммутации обмотки двигателя влияет на его характеристики, однако все соединения выводов находятся под защитным кожухом, в блоке управления. Их попросту не видно, но не стоит отчаиваться. Есть способ, который позволяет узнать метод коммутации, не прибегая к разбору блока управления.

Для этого достаточно заглянуть на номерную табличку, установленную на корпусе двигателя. На ней отмечают точные технические параметры, в том числе и метод коммутации. К примеру, на ней можно обнаружить следующие обозначения: 220/380В и геометрические обозначения треугольник/звезда. Эта последовательность говорит о том, что на моторе, работающим от сети 380В., установлена схема коммутации обмоток по типу «звезда».

Однако данный способ не всегда срабатывает наверняка. Таблички на старых двигателях часто затерты либо вовсе потеряны. В таком случае придется раскручивать блок управления.

Второй способ подразумевает визуальный осмотр выводных контактов. Контактная группа может быть соединена следующим способом:

  1. Одна перемычка на трех контактах с одной стороны выводов. К свободным выводом подведены проводу питания. Это метод звезда.
  2. Выводы соединены попарно тремя перемычками. На три вывода приходит три провода питания. Это метод треугольника.

На некоторых моторах в блоке управления можно обнаружить всего три вывода. Это говорит о том, что коммутация произведена внутри самого двигателя, под защитным кожухом.

Трехфазные моторы очень выносливы и ценятся в хозяйстве, ремонте и стройке. Но они бесполезны для домашнего использования, так как бытовая сеть может дать всего одну фазу, напряжением 220В. На самом деле, это не совсем верное суждение. Подключить трехфазный асинхронный двигатель к бытовой сети возможно. Это делается при помощи радиодетали – конденсатора. Разберем данный способ подробнее.

Сдвиг фаз при помощи конденсаторов

Моторы, в которых используют конденсаторы, называют конденсаторными двигателями. Сам конденсатор устанавливают в цепь статора так, чтобы он создавал сдвиг фазы в обмотках. Чаще всего данную схему используют при подключении трехфазных асинхронных двигателей к бытовой сети 220В.

Для сдвига фаз потребуется подключить одну из обмоток в разрыв с конденсатором. При этом емкость конденсатора подбирают таким образом, чтобы сдвиг фаз на обмотках получился максимально приближенным к 90°. В этом случае для ротора создается максимальный крутящий момент.

ВАЖНО: В данной схеме необходимо учесть модули магнитной индукции обмоток. Они должны быть одинаковыми. Это позволит создать суммарное магнитное поле, которое будет вращать ротор по кругу, а не по эллипсу. В этом случае ротор будет крутиться с большей эффективностью.

Оптимальный сдвиг фазы достигается правильным подбором емкости конденсатора, как в пусковом, так и в рабочем режиме. Также правильное круговое магнитное поле зависит:

  • скорости вращения ротора;
  • напряжения сети;
  • числа витков обмотки;
  • подключенных конденсаторов.

Если оптимальное значение одного из параметров отходит от нормы, то магнитное поле становится эллиптическим. Качественные характеристики двигателя сразу же упадут.

Поэтому для решения разного типа задач подбирают двигатели с разными емкостями конденсаторов. Для обеспечения максимального пускового момента берут конденсатор большей емкости. Он обеспечивает оптимальный ток и фазу во время запуска мотора. В случае, когда пусковой момент не имеет значения, уделяют внимание только созданию необходимых условий для рабочего режима.

Как подключить трехфазный электродвигатель в сеть 220 В?

Рассмотрим самый простой способ подключения трехфазного асинхронного двигателя в бытовую сеть. Для этого потребуется набор ручных инструментов, конденсатор, а также минимальные знания электротехники и мультиметр.

Итак, пошаговое руководство по подключению:

  1. Раскручиваем блок управления двигателя и смотрим схему подключения. Если применен метод звезды, необходимо перекрутить коммутацию на треугольник.
  2. Подсоединение производят только с одной стороны выводов обмоток. Для удобства обозначим их от 1 до 3.
  3. На 1-ый и 2-ой вывод подсоединяем конденсатор.
  4. На 1-ый и 3-ий вывод заводим провода питания 220В. При этом вывод 2 не трогаем. На нем остается только конденсатор.
  5. Включаем провод питания в сеть и проверяем работу двигателя.

ВАЖНО: Расчет мощности конденсатора производят по формуле: на 100Вт /10 мкФ.

Данный способ очень прост и безопасен. Перед подсоединением конденсатора и предварительным пуском двигателя, стоит проверить целостность контура проводки на пробитие по корпусу. Это можно сделать при помощи мультиметра.

Как видно, схема довольно проста. Подключение не займет много времени и потребует минимум усилий. Есть и другие схемы подсоединения трехфазного двигателя в обычную сеть. Рассмотрим и их.

ИНФОРМАЦИЯ: К сожалению не все трехфазные двигатели хорошо работают от бытовой сети. Некоторые могут попросту перегореть. К таким относятся моторы с двойной клеткой короткозамкнутого ротора (серия МА). Для использования трехфазных моторов в бытовой сети лучше использовать двигатели серии АО2, АПН, УАД, А, АО.

Схема подключения трехфазных двигателей в однофазную сеть

Для безопасной и корректной работы трехфазного асинхронного двигателя от бытовой сети необходимо использовать конденсатор. При этом его емкость должна зависеть от количества оборотов мотора.

В практическом исполнении данное устройство изготовить довольно проблематично. Для решения данной задачи используют управлением двухступенчатое управление мотором. Таким образом, в момент пуска работают два конденсатора:

  • пусковой (Сп);
  • рабочий (Ср).

После набора двигателем рабочих оборотов, пусковой конденсатор отключают.

Рассмотрим схему подключения двигателя при помощи двух конденсаторов.

Когда включают пакетный выключатель П1 происходит замыкание контактов П1.1 и П1.2. В этот момент необходимо нажать кнопку «Разгон». Когда двигатель выйдет на рабочие обороты, кнопку отпускают. Реверс двигателя осуществляется путем переключения тумблера SA1.

Важно: правильно рассчитать емкость рабочего конденсатора.

Рассмотрим несколько формул для подключения обмоток разными методами:

  1. Для метода «звезда». Формула: Ср = 2800*(I/U); где Ср – емкость рабочего конденсатора (мкФ), I – потребляемый электродвигателем ток в (А), напряжение в сети (В).
  2. Для метода «треугольник». Формула: Ср = 4800*(I/U); где Ср – емкость рабочего конденсатора (мкФ), I – потребляемый электродвигателем ток в (А), напряжение в сети (В).

Для любого метода коммутации рассчитывают потребляемый электродвигателем ток. Формула: I = P/(1.73Uŋ*cosϕ); где Р – мощность двигателя в Вт, указанная в его паспорте; ŋ – кпд; cosϕ- коэффициент мощности; U -напряжение в сети.

В данной схеме емкость пускового конденсатора Сп подбирают в 2-2.5 раза выше емкости рабочего конденсатора. При этом все конденсаторы должны быть рассчитаны на напряжение превышающие напряжение сети в 1.5 раза.

ИНФОРМАЦИЯ: Для бытовых сетей 220В хорошо подходят конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500В и выше. Для кратковременного подключения используют конденсаторы К50-3, ЭГЦ-М, КЭ-2 в качестве пусковых. При этом их рабочее напряжение должно быть не менее 450 В. Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами

Применение электролитических конденсаторов в качестве пусковых

Для подключения трехфазных асинхронных электродвигателей в бытовую сеть используют, как правило, простые бумажные конденсаторы. За долгое время применения они показали себя не самым лучшим образом, поэтому сейчас большие бумажные конденсаторы практически не используются. Им на смену пришли оксидные (электролитические) конденсаторы. Они имеют меньшие габариты и широко распространены на рынках радиодеталей. Рассмотрим схему замены бумажного конденсатора на оксидный:

Из схемы видно, что положительная волна переменного тока проходит через элементы VD1, С2, а отрицательная – через VD2, С2. Это говорит о том, что данные конденсаторы можно использовать с допустимым напряжением в 2 раза меньшим, чем у обычных конденсаторов аналогичной емкости. Емкость для оксидного конденсатора рассчитывается по тому же методу, что и для бумажных конденсаторов.

ИНФОРМАЦИЯ: Так в схеме однофазной сети 220В используют бумажной конденсатор с напряжением 400В. При его замене на оксидный конденсатор, достаточно мощности 200В.

Последовательное и параллельное соединение конденсаторов

Стоит отметить, что у подключенного двигателя в бытовую сеть 220В, без особой нагрузки будет страдать одна из обмоток. Это контур, который подключается через конденсатор. В этом случае на него поступает ток, на 20-30% выше номинального. Из этого следует, что на недогруженном моторе емкость конденсатора необходимо уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Решить данную задачу поможет замена одного большого конденсатора на несколько, соединенных в цепь параллельным способом. Так можно подключать или отключать ненужные компоненты, используя конденсаторы в качестве пусковых. При параллельном соединении суммарную емкость в мкФ считают по формуле: Cобщ = C1 + C1 + … + Сn.

Необходимые инструменты и комплектующие

Любой монтаж вышеперечисленных схем потребует минимальных знаний электротехники, а также навыков работы с радиоэлектроникой и пайкой мелких деталей.

Из инструментов потребуется:

  1. Набор отверток для сбора/разбора блока управления двигателя. Для старых двигателей лучше подбирать мощные плоские отвертки из хорошей стали. За длительное время работы двигателя болты в корпусе могут «прикипеть». Для их откручивания потребуется немало сил и хороший инструмент.
  2. Пассатижи для обжатия проводов и других манипуляций.
  3. Острый нож для снятия изоляции.
  4. Паяльник.
  5. Канифоль и припой.
  6. Индикаторная отвертка для поиска фазы, а также индикации разрыва на кабеле.
  7. Мультиметр. Один из основных диагностирующих устройств.

Также потребуются радиодетали:

  • Конденсаторы.
  • Кнопка пуска.
  • Магнитный пускатель.
  • Тумблер реверса.
  • Контактная плата.

Перечисленных инструментов и радиокомпонентов хватит для сборки представленных выше схем.

ВАЖНО: Не подключайте двигатель в сеть, не проверив работу собранной схемы. Ее можно протестировать при помощи мультиметра. Это убережет технику от короткого замыкания.

Заключение

Трехфазный асинхронный двигатель – это надежный и эффективный мотор, который можно подключить как к трехфазной, так и однофазной сети. При этом необходимо соблюдать ряд правил. В частности – правильно рассчитывать емкости конденсаторов. Если все расчеты верны, двигатель будет работать в оптимальном режиме с высоким уровнем КПД.

</index>Используемые источники:

  • https://odinelectric.ru/equipment/kak-podklyuchit-3-faznyj-elektrodvigatel-k-seti-220-volt-cherez-kondensator
  • https://electrikblog.ru/odnofaznyj-asinhronnyj-dvigatel-shema-podklyucheniya-s-puskovoj-obmotkoj-i-kondensatornym-zapuskom/
  • https://remboo.ru/inzhenernye-seti/elektrika/podklyuchenie-trehfaznogo-dvigatelya.html

Рейтинг автора
5
Подборку подготовил
Андрей Ульянов
Наш эксперт
Написано статей
168
Ссылка на основную публикацию
Похожие публикации